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§ Abstract

High order accurate solution methods have proven to be invaluable in solving the Euler and Navier-Stokes equations on structured
meshes. In this paper we present recent improvements in high order K-exact reconstruction on unstructured meshes. Accurate reconstruction
is the key ingredient in obtaining high order spatial aceuracy for many upwind finite-volume solvers. The new reconstruction procedures
are incorporated into a basic upwind finite-volume scheme suitable for solving scalar advection-diffusion equations as well as the Euler and
Navier-Stokes equations. Numerical calculations are performed comparing the present method with lower order accurate reconstruction
procedures (piecewise constant and piecewise linear) and various competing l:echnolégies such as the fluctuation splitting method of Roe
[1] and Deconinck et al. [2] and a system variant of the streamline diffusion Petrov-Galerkin method developed by Hansbo[3] and Hansbo

and Johnson [4]. Five test problems are used in the numerical comparisons: scalar circular advection, transonic and supersonic Euler flow,

laminar boundary-layer flow, and general compressible Navier-Stokes flow.

§ Introduction

The calculation of Euler and Navier-Stokes flow
on unstructured meshes has evolved significantly in
recent years. A number of solvers are now available
for computing inviscid and /or viscous flow on unstruc-
tured meshes, see for example [4-15]. These methods
are almost exclusively formulated using linear elements
or linear reconstruction. Experience with structured
mesh solvers indicates that higher order accurate ap-
proximations can significantly improve the quality of
numerical solutions. In Barth and Frederickson [16]
and Vankeirsbilck and Deconinck [17] high order recon-
struction techniques have been developed and imple-
mented within the framework of a finite-volume Euler
solver. The relatively high computational cost of these
approaches has warranted further research to simplify
the overall procedure and reduce the computational
cost. The purpose of this paper is to report on recent
progress in this area.

§ Preliminaries

Integral Formulation

In the present formulations the integral conserva-
tion law form of the Euler and Navier-Stokes equations
is solved in a two-dimensional domain 2 with perime-
ter 0Q2:

d
— [ udS+ F(u,7)dl=0 (1.0)
dt Jq an
In this equation u is the vector of conserved variables
for mass, momentum, and energy. The vector F(u, @)

represents the inviscid and viscous flux vector with
normal .

Finite-Volume Schemes
In the finite-volume method the solution domain
is tessellated into a number of smaller nonoverlapping

subdomains (2 = UQ;). Each subdomain serves as:a
control volume in which mass, momentum, and energy
are conserved. We assume for the present discussions
that the solution unknowns are placed at vertices of
the mesh and the control volumes are formed from a
median dual tessellation of the triangulation as shown
in Fig. 1.0.
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Figure 1.0 Mesh with centroid and median duals.

Note that the use of pointwise values of the solution
unknowns is a departure from Godunov’s method [18]
in which the fundamental unknowns are integral cell
averages of the solution in each control volume. This
departure significantly changes the “mass” matrix which
appears in the discretization of the time integral in
Eqn. (1.0). For steady-state calculations the mass
matrix can be lumped into a diagonal matrix without
sacrificing spatial accuracy. Mass lumping has been
used in all calculations presented.

The solution procedure for solving Eqn.
consists of the following steps:

(1.0)

Reconstruction. Given pointwise values of the solu-

Copyright (2)1993 by the American Institute of Aeronautics and Astr

ics, Inc. No copyright is asserted in the United States under Title

17, U.S. Code. The U.5. Government has a royalty-free license to exercise all rights under the copyright claimed herein for Governmental

purposes. All other rights are reserved by the copyright owner.



tion at vertices of the mesh, reconstruct a polynomial
approximation to the solution in each control volume.
These polynomials may vary discontinuously from con-
trol volume to control volume.

Flur Quadrature. From the piecewise polynomial de-
scription of the solution, approximate the flux integral
in Eqn. (1.0) by numerical quadrature. The actual
choice of quadrature rule used in the flux integration
is dictated by the order of data reconstruction, i.e. one
point quadrature formulas with linear reconstruction
and two point Gauss quadratures with quadratic re-
construction. Because the piecewise polynomials are
discontinuous at control volume boundaries, the Euler
flux is supplanted by a numerical flux which is a func-
tion of two solution states. Those flux functions which
can be characterized as some approximate and/or ex-
act solution of the Riemann problem of gasdynamics
result in upwind biased approximations. Roe’s approx-
imate Riemann solver [19] is one example of an upwind
flux function and will be used in all computations.

Evolution. Given a numerical approximation to the
flux integral, evolve the system in time using any class
of implicit or explicit schemes. This results in new
solution unknowns.

The solution process can then be repeated.

The most difficult task in the solution process is
the reconstruction of piecewise polynomial data given
the solution unknowns. The reconstruction process
in one dimension is depicted in Fig. 2.0. In this
case pointwise values of the solution unknowns coin-
cide with the cell average values. The piecewise linear
approximates have been calculated from the knowledge
of adjacent values of the solution.

Figure 2.0 Linear reconstruction from cell data.

Unfortunately, advection schemes based on these re-
constructed polynomials produce spurious oscillations
near discontinuities and regions of high solution gradi-
ent unless additional measures are taken. These mea-

sures are the basis for the class of MUSCL schemes
developed by van Leer [20,21]. The basic idea is to re-
quire that the reconstructed piecewise polynomials do
not introduce new maxima or minima into the recon-
structed data. The resulting strategy would produce
the modified reconstruction shown in Fig. 3.0.

Figure 3.0 Linear reconstruction of data with mono-
tone limiting.

In the next section we present a technique for linear re-
construction on unstructured meshes based on a least-
squares principle.

Least-Squares Linear Reconstruction [22]

Given values of the solution at vertices of the
mesh, consider two different solution representations
obtained from this pointwise data. The first represen-
tation is continuous while the second representation is
discontinuous. For each triangle a unique linear in-
terpolant exists which passes through the three vertex
values. The first representation, u'"*(z,y), is the C°
continuous union of these triangle interpolants. The
second representation, u"**°"(z, y), is that polynomial
which is to be determined from the reconstruction pro-
cess for a particular control volume. The reconstructed
polynomial in each control volume is determined from
the following minimization problem:

Determine the reconstruction polynomial in each con-
trol volume which minimizes in Lo the distance be-
tween the two solution representalions at all quadra-
ture points used in the fluz calculation.

This minimization problem is motivated by the ob-
servation that if the continuous interpolant u'™*(z,y)
were actually used in the flux computations then a
discretization closely related to the Galerkin finite-
element would result. Recall that the Galerkin method
produces a solution which is the “best” approximation
(in energy) to the actual solution. The minimization
problem attempts to find discontinuous reconstruction



polynomials that are close to the C° counterparts. For
each control volume compute the difference between
the two data representations at all quadrature points
(:=1,2,3,..n) to be used in the numerical flux inte-

gration,
recon int
Uy Ty

u;econ - u‘;’"
u;ccon - & ugﬂ

£l
I

(2.0)

u:}ccon 1ad u:nt

then find the reconstructed vertex gradient which min-

imizes ||K;||2 For linear reconstruction the flux quadra-
ture points can be placed at edge midsides [5]. Solving
the minimization problem is equivalent to solving the
following nonsquare matrix problem in a least-squares
sense for the control volume surrounding vertex v
with incident edges e(vo, v;):

[Az; Ay E!H - uo;
Azy Ay up — ug
A-"::; Ays (“s (Us o uu) (3 )
; . = .0
: : Uy ) 3
Az.- Ay,- (u‘ 2y I.In)

where Az = z — 2o and Ay = y — yo. This equation
can also be written in symbolic form

—

L: Ti| Ve=F.

Exact calculation of reconstruction gradients for linear
u is guaranteed if any two row vectors span all of 2-
space (this is always true in the present applications).
The resulting system is most easily solved via normal

equations
Ly Lu] o (f1 )
[Lu Lo b fa

where L;; = (f, : f_,) and f; = (T:. . _—f+) In practice
the inner product sums L;; and f; can be calculated
by a single loop through all edges of the mesh:

(4.0)

For k = 1,n(e) ! Loop through edges of mesh
j1=e"Y(k,1) ! Pointer to edge origin
ja=e"Y(k,2) ! Pointer to edge destination
dz = (2(j2) = 2(j1)) ! Az
dy = (y(j2) —y(51)) ! Ay

! ljy origin sum

! Iy destination sum
! b3 origin sum

! 15 destination sum

hi(j1) = (i) + dz - dz
hi(j2) = hi(j2)+dz-dz
ha(j1) = ha(s1) + dz - dy
ha(j2) = lha(j2)+dz-dy

l2a(j1) = loa(jr) + dy-dy ! lag origin sum
l23(72) = ba(ja)+dy-dy ! loy destination sum
du = (u(j2) —u(s1)) ! Au
L) = fi(i1) +dz-du ! f, origin sum
fi(j2) = fi(j2) +dz-du ! f; destination sum
fa() = folGi) + dy-du ! fo origin sum
fa(j2) = fa(jo) +dy-du ! fy destination sum
Endfor

From these inner product sums reconstructed gradi-
ents are obtained from the 2x2 system given in Eqn.
(4.0).

§ Simplified Quadratic Reconstruction

Several strategies exist for piecewise quadratic
reconstruction. As a general design criterion we re-
quire that the reconstuction exhibit quadratic preci-
sion (that the reconstruction be exact whenever the
solution varies quadratically). This is sometimes called
the property of k-exactness. Recall that a quadratic
polynomial contains six degrees of freedom in two di-
mensions. This means that the support (stencil) of
the reconstruction operator must contain at least six
members. In refs. [16] and [17] this is accomplished by
increasing the physical support on the mesh until six or
more members are included. This approach has several
pitfalls. Increasing the physical support may not al-
ways be possible due to the presence of boundaries. In
this situation either the data support must be shifted
in an unnatural way or the order of polynomial re-
construction must be lowered. Increasing the physical
support also has the undesirable effect of bringing less
relevant data into the reconstruction. One example
would be data reconstruction in a flow field containing
two shock waves in close proximity.

Another approach to higher order reconstruction
is to add additional degrees of freedom into the solu-
tion representation. In our approach a quadratic ele-
ment approximation is used, see Fig. 4.0. The solu-
tion unknowns are the six nodal values. These values
uniquely describe a quadratic function within the ele-
ment.

Figure 4.0 Six noded quadratic element with control
volume tessellation (bold lines).



The control volumes for the finite-volume method are
then formed from a tessellation of the elements. The
particular tessellation which we prefer is obtained by
connecting centroids and edges as shown in Fig. 4.0.
For each control volume surrounding a vertex or
midside node, v, a quadratic polynomial of the form
T 1o
u(z,y)o = uo + Ar" Vug + EAI' HoAr  (5.0)
must be reconstructed from surrounding data. In this
equation Vu is the usual solution gradient and H is
the Hessian matrix of second derivatives

0= [uu uzy]
Uzy Uyy

The basic solution procedure for the Euler and Navier-
Stokes equations is identical to that described earlier,
namely reconstruction, flux evaluation, and evolution.
Once again the difficult task is data reconstruction
given values of the solution at nodes of the mesh.

Least-Squares Quadratic Reconstruction

Following the procedure developed for linear re-
construction, we again consider two representations of
the solution (continuous u***(z,y) and discontinuous
u"*"(z,y)). We again seek to minimize the L, norm
of the distance between these functions as sampled at
flux quadrature points. This yields the following non-
square matrix problem:

- o2 S
Azy Ayl A—2: AI]_Ayl ﬁ;_: Aul
Az, Ay -A—:l AzsAys A—g-"- Ug Aug

2 2
Aza Ays -A_;JI. AzsAys A_gi Uy A'ua
Uz | = F
- : : : s u ;
=3 Ay? ¥ A i
Az; Ay 97‘- Az;Ay; —-g-‘ Uyy u

where Au = u*™* — ug for each quadrature point. The
matrix equation can also be written symbolically as

Uz

i T JEr— Uy —_

L[ L} La Lq L5 Urr =f. (6.0)
‘I'J;-,-
Uyy

Multiplication by a matrix transpose produces the nor-
mal form of the least-squares problem:

Ly Lia Lis Lisa Lys Uz h

Lia Lz Laa Lag Lgs Uy fa

Ly3 Las L3z Las Lss Uzr | = | fa

Lis Las L3g Lag Lgs Uzy fa

Lis Los L3s Las Lssd \uyy fs
(7.0)

This equation requires the calculation of 15 inner prod-
ucts Li; and 5 inner products f;. Note that certain
identities exist relating L;; which further reduce the
number of L;; needed to 12.

Two concerns arise in the general implementa-
tion of this least-squares technique. First, we desire
that the reconstruction be invariant to affine coordi-
nate transformations, i.e. translation, rotation, dilata-
tion, and shear. These effects can be eliminated or re-
duced by a preimage mapping to a normalized control
volume, see for example [16]. Second, the least-squares
solution by way of normal equations can be poorly con-
ditioned. Numerical evidence indicates that for highly
stretched meshes (aspect ratio > 100000) and linear
reconstruction, the method does not suffer from con-
ditioning problems using 64 bit arithmetic. However,
when implementing quadratic reconstruction, we have
noted some conditioning problems when the cell as-
pect ratio gets very large. Other methods for solving
the basic least-squares problem are much less sensitive
to the matrix condition number: Householder trans-
forms, SVD, etc. For highly stretched meshes the use
of these methods may be a necessity. This is an area
of current research.

§ Enforcing Monotonicity of the Reconstruction

Consider the reconstructed quadratic polynomial
for the control volume surrounding vo

1
u(z,y)o = uo + ArTVua 4 EArTHgAr.

One approach to enforcing monotonicity of the recon-
struction is to introduce a parameter ¢ into the recon-
struction polynomial

u(z,y)o = uo + Bo [ArTVun + %A_rTHuAr (8.0)

with the goal of finding the largest admissible ®, €
[0, 1] while invoking a monotonicity principle that val-
ues of the reconstructed function must not exceed the
maximum and minimum of neighboring nodal values
and ug. To calculate ®, first compute

u?:n = mm(uo. un!il’him'l)‘ ug’lfu‘ = max(uu, uneighbm’-’)

then require that uJ*® < u(z,y)o < uJ***. Extrema in
u(z,y)o can occur anywhere in the interior or on the
boundary of the control volume surrounding vy. De-
termining the location and type of extrema is clumsy
and computationally expensive. One approximation
which considerably simplifies the task is to interrogate
the reconstructed polynomial for extreme values at the



quadrature points used in the flux integration. For
each quadrature point on the boundary of the control
volume, evaluate the reconstructed polynomial u; to
determine the limiting value of ®,, which satisfies:

min(l,in""—‘%), if u; — g > 0

L,—ug
0= min (1,45252) | ifw—uo <0
i fuj—up=0

This limiting procedure is very effective in removing
spurious solution oscillations although the discontinu-
ous nature of the limiter can hinder steady-state con-
vergence of the scheme.

§ Numerical Results

A variety of fluid flows have been computed us-
ing the reconstruction schemes described earlier. For
purpose of comparison, computations have also been
performed using other state-of-the-art methods: the
fluctuation splitting method of Roe [1] and Deconinck
et al. [2] as well as a variant of the Galerkin least-
square finite-element method developed by Hansbo [3]
and Hansbo and Johnson [4]. These methods are de-
scribed in appendices A and B. Both of these methods
have been reformulated in terms of “edge formulas”
which makes them easily retrofitted into existing com-
puter codes which use edge data structures. Table 1.0
summarizes the various schemes, their data support in
graph distance, and the relative CPU time for explicit
evaluation of the steady-state discretization. These es-
timates are based on a fully vectorized computer im-
plementation.

Scheme Support Cpu Units
Piecewise constant reconstruction 1 1
Piecewise linear reconstruction 3 3
Fluctuation splitting 1 11
Galerkin least-squares e | 10
Piecewise quadratic reconstruction 2 22

Table 1.0 Comparison of data support and cpu times
for various schemes. g

In the remainder of this section numerical results
are presented comparing the various schemes. Five
test problems are used in the numerical comparisons:
scalar circular advection, supersonic and transonic Eu-
ler flow, laminar boundary-layer flow, and general com-
pressible Navier-Stokes flow.

Scalar Circular Advection

The first test problem solves the two-dimensional
scalar advection equation

ug + (yu): — (2“)!! =0

or equivalently
u,-{-,—\.-Vu:O, X=(y,~2)T

on a grid centered about the origin, see Fig. 5.0. Dis-
continuous inflow data is specified along an interior cut
line, u(z,0) = 1 for —.6 < z < —.3 and u(z,0) = 0,
otherwise. The exact solution is a solid body rotation
of the cut line data throughout the domain.

Figure 5.0 Grid for the circular advection problem.

The discontinuities admitted by this equation are sim-
ilar to the linear contact and slip line solutions admit-
ted by the Euler equations. Linear discontinuities are
often more difficult to compute accurately than nonlin-
ear shock wave solutions which naturally steepen due
to converging characteristics. Figures 5.1-5.5 display
solution contours for the various schemes.

Figure 5.1 Solution contours, piecewise constant re-
construction.



The piecewise constant reconstruction scheme exces-
sively smears the discontinuities. The remaining meth-
ods all perform very well. The piecewise linear re-
construction, fluctuation splitting, and Galerkin least-
squares schemes all produce similar results with sim-
ilar spreading of the discontinuities., Note that some
variation in results can be obtained with the Galerkin
least-squares solution with discontinuity capturing op-
erator depending on the choice of element length scale
(cell diameter, incircle, circumeirele, etc.).

Figure 5.2 Solution contours, piecewise linear recon-
struction.

The results for the piecewise quadratic reconstruction
are shown in Fig. 5.5. The width of the discontinuities
is substantially reduced with very little observable grid
dependence.

Figure 5.3 Solution contours, fluctuation splitting
scheme.

Figure 5.5 Solution contours, piecewise quadratic re-
construction.

Supersonic Oblique Shock Reflections

Two supersonic streams (M=2.50 and M=2.31)
are introduced at the left boundary. These streams
interact producing a pattern of supersonic shock re-
flections down the length of the converging channel,
see Fig. 6.0. The grid is a subdivided 15x52 mesh
with perturbed coordinates.

Figure 6.0 Channel Grid.



Solution Mach contours are shown in Figs. 6.1-
6.5. Figure 6.6 graphs density profiles along a hor-
izontal cut at 70 percent the vertical height of the
left boundary. As expected, the piecewise constant re-
construction scheme severely smears the shock system
while the schemes based on a linear solution variation,
Figs. 6.2-6.4, all perform surprisingly well. The piece-
wise quadratic approximation, Fig. 6.5, shows some
improvement in shock wave width although the im-
provement is probably due to the increased number of
unknowns in the quadratic element.

Figure 6.1 Mach contours, piecewise constant recon-
struction.

Figure 6.2 Mach contours, piecewise linear recon-
struction.

Figure 6.5 Mach contours, piecewise quadratic recon-
struction.

This is not a surprising result since the solution has

large regions of constant flow which do not benefit
greatly from the quadratic approximation. At solution
discontinuities the quadratic scheme reduces to a low
order approximation which again negates the benefit
of the quadratic reconstruction.
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Figure 6.6 Density profile, y/h = .70.

Transonic Airfoil Flow

The next calculation consists of transonic Euler
flow about a NACA 0012 airfoil at M = .80 and a =
1.25°. The solution consists of an upper and lower
surface shock wave and a trailing edge slip line. The
grid used for all calculations is shown in Fig. 7.0.
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Figure 7.0 Closeup of grid about NACA 0012 airfoil.

Solution Mach contours are shown in Figs. 7.1-7.5 for
the various schemes. The surface pressure coefficient
distributions are plotted in Fig. 7.6. The solution ob-
tained using piecewise constant reconstruction misses
the lower surface shock wave and trailing edge slip line.



The fluctuation splitting method also misses these fea-
tures but computes a stronger (more accurate) upper
surface shock. The preshock oscillations are appar-
ently attributable to the choice of wave model and have
been observed elsewhere, see Powell et al. [23].

Figure 7.1 Mach contours, piecewise constant recon-
struction.

Figure 7.2 Mach contours, piecewise linear recon-
struction.

The piecewise linear reconstruction scheme and Galerkin
least-squares solutions both detect upper and lower
surface shock waves as well as the slip line. Once again
note that the amount of discontinuity capturing oper-
ator added to the Galerkin least-squares scheme has
been approximately optimized and improved results
might be obtainable. As expected the numerical solu-
tion obtained with piecewise quadratic reconstruction
is superior to the other methods. Both the upper and
lower surface shocks are crisply captured.

Figure 7.3 Mach contours, fluctuation splitting with
Roe six-wave model.

Figure 7.4 Mach contours, Galerkin Least- Squares.

Figure 7.5 Mach contours, piecewise quadratic recon-



struction.
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Figure 7.6 Cp distributions on NACA 0012 airfoil
surface.

Blasius Boundary-Layer

A self-similar laminar boundary-layer is simu-
lated on a 10x20 subdivided quadrilateral mesh, see
Fig. 8.0. An analytical Blasius profile is specified at
inflow and computations at low Mach number (M=.08)
were performed using the reconstruction schemes.

TR

Figure 8.0 Coarse Flat Plate Grid.

Viscous terms have been discretized in finite-volume
form using the continuous triangle interpolants (linear
or quadratic) and integration quadrature rules consis-
tent with these interpolants. For the piecewise con-
stant and linear schemes this produces the viscous
term weights described in appendix A and in Barth
[15]. Figure 8.1 graphs the velocity profile which has
been vertically sampled at x/L = .88. Data is plotted
at locations corresponding to the intersection of this
vertical line and the edges of the mesh. This results in
a somewhat irregular spacing of data points.
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Figure 8.1 Velocity profiles at x/L=.88.

The piecewise constant reconstruction performs rather
poorly owing to the excessive diffusion in the Euler
scheme. The linear reconstruction scheme (without
limiting) produces a reasonably accurate solution with
a slight overshoot in the outer edge of the boundary-
layer. The quadratic scheme performs very well with a
slight error in the region of maximum curvature. Both
higher order methods appear to have acceptable accu-
racy for this problem.

Multi-Element Airfoil Flow

Turbulent high Reynolds number flow (M = .2,
a = 8.2°, Re = 9 million) is computed about a 3-
element airfoil configuration. Experimental data is
available at these conditions, see Valarezo et al. [24].

A

Figure 9.0 Grid about multi-element airfoil configu-
ration.




Computations were performed using the linear least-
squares reconstruction without limiting. The Baldwin-
Barth one-equation turbulence model [25] is used to
simulate the effects of turbulence. This model has not
been implemented in the other schemes at this date
so the computations have been restricted to the linear
reconstruction scheme only. The mesh containing ap-
proximately 28,000 vertices is shown in Figs. 9.0-9.1.

VAN

[\
NSO

MY T S
N

Figure 9.1 Closeup of grid near flap region.

The pressure coefficient distribution is graphed in Fig.
9.3 for the computation and experiment. The agree-
ment with experiment is reasonably good although the
mesh resolution is inadequate in the wake regions of
the flow. This can be seen in the Mach contour plots
shown in figures 9.4-9.5. Proper mesh resolution of the
wake flow is an excellent opportunity for mesh adap-
tation although we have not developed an adaptation
procedure for this purpose.
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Figure 9.3 Cp distribution on multi-element airfoil
surface.
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Figure 9.4 Mach contours about multi-element air-
foil.

Figure 9.5 Closeup of Mach contours in trailing edge
region.

§Conclusions

The numerical results indicate that the higher
order accurate reconstruction methods (piecewise lin-
ear and piecewise quadratic) offer a substancial im-
provement over the basic low order (piecewise con-
stant) scheme. The linear reconstruction scheme ap-
pear to have the same basic level of accuracy as the
Galerkin least-squares finite-element scheme and the
fluctuation splitting scheme. The finite-volume scheme
with quadratic reconstruction is a noticable improve-
ment over the lower order reconstruction methods but
the computational cost is relatively high. Issues still
remain concerning the conditioning of reconstruction
methods for highly stretched triangulations.



§ Appendix A: Review of the Fluctuation
Splitting Approach of Roe [1] and Deconinck
et al [2]

In the following paragraphs we review the fluc-
tuation splitting approach of Roe [1] and Deconinck
et al. [2] for scalar advection equations. An edge for-
mulation of the fluctuation splitting scheme is derived
which makes the scheme easily implemented into com-
puter codes using an edge data structure. Next, we
show the extension of fluctuation splitting to scalar
advection-diffusion equations and a hybrid fluctuation
splitting scheme which improves upon the basic fluc-
tuation splitting scheme without sacrificing positivity
(monotonicity) of the scheme. Finally, the extension
of the fluctuation splitting method to the Euler equa-
tions using the Roe six wave model [2] will be briefly
reviewed.

N-scheme For Scalar Advection Equations

Consider discretizations of the integral scalar con-
servation law equation

ﬁfud”fv-ﬁda:o, F=fi+gj (A1)
ot a 1]

on simplicial meshes (triangulations) with solution un-
knowns given at vertices of the mesh. Next define the
fluctuation in a triangle T', &,

@T=_]V-F'da
T

or

&7 = —Arir - Vu (A.2)

where \p is constructed via mean-value linearization
such that an equality exists. The primary idea in fluc-
tuation splitting is to distribute the fluctuation ® back
to the three vertices (see Fig. A.1) in a characteristi-
cally correct way.

Figure (A.1) Distribution of fluctuation among ver-
tices.

At a given vertex, v;, the update scheme can be written
in the following form for all triangles incident to v;.

At
upt =} o Y Brer

TeT,:

(4.3)
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Discrete conservation dictates that for a triangle T
with vertices v1, v3, v3 a fundamental constraint that

By + 03 + By = L. (4.4)
Recall that if 8% = 3 and 4; = Y A7/3 then a
Galerkin-like discretization akin to central differencing

results. In the work by Roe [1] and Deconinck et al.
[2] upwind discretizations taking the following form

! _— ;
=y =3 D

Y Gy
' TeT:

(A.5)

are derived where
) T;' 2 g vy Va Ua
ﬁ-‘,’-_a with ®r =93 + 957 + 97,

In particular, they consider a distribution scheme (the
N-Scheme) which is monotonicity preserving with v
dependent on A. The scheme can be written in the
following form:

B4 2+ Dl —w) with w20 (40
i

This equation and inequality embodies a maximum
principle. At steady-state, the solution at v; is a pos-
itive weighted average adjacerht neighbors. Depend-
ing on the advection direction X the scheme downwind
distributes the fluctuation as depicted in Fig. (A.2),
details of the derivation can be found in [1].

3 3
4 1
5 2
azult! = ayul + Atdy, azul*! = agu} + Atd
a;ug“ = azu3 + At®3

Figure (A.2) Schematic of N-scheme.

Deconinck gives the following succint formula for 7'
in the N-Scheme

(ko)

3
WE(*f)'(u?-ﬂ?). i=1,23
j=I\"*S

ist
(A7)

7w =



where k; = Ar -nj and n; is the scaled normal vector
for the edge opposite local vertex j as shown in Fig.
(A.3).

Figure (A.3) Triangle T with local indexing.

The update scheme becomes

upt! = o +‘—' Z e Z("J)

' TeT,

up,=ul,) (A8)

fori=1,2,3and or = Ea_l(k_, . This formula can
be manipulated into the followwg edge formula for all
edges e(v;, v;) incident to v;

W=+ Z Wi (uj — (A.9)
eE.‘.‘
where
S (N nk)* (% m5)-  (Ngn )*(A., mf)"
3 205 208
(A.10)

and the scaled normal vectors n and m are depicted
in Fig. (A .4).

Figure (A.4) Local configuration for edge e(v;, v;).

Although the N-scheme is monotone, the scheme al-
lows a triangle in equilibrium X - Vu = 0 with nonzero
gradient to send nonzero contributions with zero sum
to downstream vertices. This degrades the accuracy
of steady-state solutions since the scheme is not lin-
earity preserving and only exactly preserves constant
solutions.
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NN-scheme For Scalar Advection Equations

By introducing an additional level on nonlinear-
ity, the equilibrium deficiency of the N-scheme can be
overcome. Define the frontal advection vector as the
projection of the advection vector onto the cell gradi-
ent vector

i A Vu
T Vu-Vu
Note that the use of a frontal advection vector leaves
the fluctuation unchanged

-
=m

YVu (A.11)

@7 = —ArA-Vu=—ArA" - Vu
The use of the frontal advection vector does change the
distribution formulas and insures that cells in equilib- -
rium send no contributions to downstream vertices.
This added nonlinearity is not always needed. In the
single target distribution configuration shown in Fig.
(A.2), the scheme is both positive and linearity pre-
serving. Therefore the frontal advection speeds need
only be used in the NN-scheme whenever the N-scheme
predicts a multiple target distribution. This enhance-
ment greatly improves the robustness of the NN-scheme.

Hybrid NN-scheme For Scalar Advection-
Diffusion Equations

Consider equation (A.1) with diffusion term added

ﬁfud”/v-fda:/v-pwda (A.12)
ot n 1] 1)

In Barth [15] we considered the standard finite-volume
and Galerkin finite-element discretization for the right-
hand-side of equation (A.12). The discretization can
be written in a form compatible with equation (A.9)
with weights written in terms of the two angles sub-
tending an edge and the integral averaged values of p
for each triangle

/V quda_Z i (w5 =

eef,
with
1

W= 3 [ﬁf} cota.n(af}) +7; R cotan(all )] (A.13)

or equivalently using edge normals
L L

v . (nij ml;) —R (nu m‘:)

(AR [ A ! B/ LU . (A14)

- [": af <mg] 7 Tl |



Figure (A.5) Local configuration for edge e(v;, v;).

It is well known that a sufficient condition for posi-
tivity of weights is that all angles in the triangulation
are acute. This is easily seen from equation (A.13).
The generalization to n-dimensional triangulations is
that all simplices are self-centered (the circumcenter
is contained within the simplex). Sharper bounds can
sometimes be obtained from (A.13). For example in
two dimensions with u constant it is known that for
general point distributions and boundary data that a
necessary and sufficient condition for positivity (and a
discrete maximum principle) is that the triangulation
be a Delaunay triangulation. This result is directly
obtained from (A.13). Recall that valid Delaunay tri-
angulations can have obtuse angles approaching 180°.

In diffusion dominated portions of the flow it is
no longer necessary to impose the positivity conditions
on the weights as given (A.10). It is possible to have
negative weights appearing in the advection operator
such that when combined with the weights appearing
in the diffusion operator the overall scheme is positive.
A natural choice of advection schemes in the diffusion
dominated limit is obtained with 83’ = 1/3 since the
Galerkin-like advection scheme is the best approxima-
tion to the true solution in an energy norm. An obvi-
ous strategy is to introduce a new parameter 8 € [0, 1]
such that

6 =0 diffusion dominated
# =1 advection dominated

where the actual value of @ is determined from posi-
tivity considerations for the entire advection-diffusion
discretization. The Galerkin-like advection scheme can
be written in a form similar to (A.8)

SR & i
W=+ 57 EEU"')(“"-' -ul) (A15)
TeT:  j=1

for i = 1,2,3. The entire advection update scheme
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with variable parameter # would take the form
At

k)t
S, -.2: 9_('
%M1 T 50r

3
; (k)™ (uy, —uy)
* TeT; j=

—

3
k,
+(1-6r) ) 25, =)
j=1

or in terms of edge weights

~ 5 I ” s
1) 17 203 ij ——6
For o & =
R s nf)*(}; mf)- 1 gy Qi m?
*+ [ =%; 20}1} +{1- ij)_'ﬁ‘_
3 (A.16)

When combined with the diffusion term weights (A.14),
the task is to find the largest @ in each triangle T such
that

,Orn)* O m)-
20

(*m)  E(n-m)
1-4 = <
i e T =
for all possible combinations of m and n in T. For self-
centered meshes, a solution is readily obtained with
6 € [0,1]. We find that this hybrid strategy for scalar
advection-diffusion equations is very useful for solving

the one-equation turbulence model given in [25].

Extension to the Euler Equations

The basic notion is to decompose the fluctua-
tion into a finite number of eigensolutions of the two-
dimensional Euler equations:

®= Z AmAmTm
m

where a is the wave strength, A the wave speed, and r
a right eigenvector of the two-dimensional Euler equa-
tions. These quantities are a function of the individ-
ual wave orientations. The unknown wave orienta-
tions, speeds, and strengths are determined from the
fluid state and gradient. A detailed discussion of this
decomposition is beyond the scope of this paper, see
(1,2,23]. For the Roe model used in the present compu-
tations, six eigensolutions corresponding to four acous-
tic waves, one entropy wave, and one shear wave are
used in the decomposition. Once the decomposition is
known, the scalar advection scheme can be applied on
a wave by wave basis.

§ Appendix B: Review of the Galerkin Least-
Squares Approach of Hansbo [3] and Hansbo
and Johnson [4]

In this section we review the Galerkin least-squares
finite-element method with nonlinear discontinuity cap-
turing operator. The formulation given here assumes



uniformly shaped elements. For a discussion of for-
mulations suitable for computation on stretched ele-
ments see Shakib [14]. We begin by reviewing the
least-squares finite-element operator with linear ele-
ments. An edge formulation of the least-squares oper-
ator is presented which makes the scheme easily imple-
mented in computer codes using an edge data struc-
ture. We then review the conservative variable ap-
proach of Hansbo [3] and Hansbo and Johnson [4]. Fi-
nally, we review the discontinuity capturing operator
given in [3] for both scalar and systems of equations.

Galerkin formulation

Consider the linear advection equation

e+ A-Vu=0. (B.1)

Multiplying by the trial functions w followed by in-
tegration over the domain produces a weak form of
(B.1)

i3'-/mun.'iir:+./w(X—VM.)l:h:¢=0.
ot Ja a

When the trial and solution function spaces are iden-
tical, a Galerkin discretization is obtained. In the
present case w and u are linear in space and piecewise
constant in time. Note that the resulting mass-lumped
update scheme would be identical to (A.15). For the
linear differential equation the scheme is isoenergetic
(neutrally stable) and when nonlinearity is introduced
into (B.1) additional measures must be taken to in-
sure stability. One technique for stabilizing the basic
Galerkin scheme is the addition of symmetric bilinear
(quadratic) terms to equation (B.2). The following
section describes two possibilities.

(B-2)

Least-Squares Stabilization

Consider stabilization of the basic Galerkin method

by the addition of the bilinear least-squares term to the
right-hand-side of (B.2).

B(u,w);,s=—./n(u1+;\'-Vu)r(wg+:\'-Vw) da

B3)
To understand the energy consequences of this (term
simply replace w by u. For 7 > 0 we have that
B(u,u)Ls < 0 which implies that this term would
remove energy from the basic Galerkin system. For
steady-state computations we need only consider (B.3)
with time terms removed.

I T _fn(i-vu) r(A-Vo)da (BA)

Discretization of this term with linear space elements
u and w yields an edge formula

/(X-Vu) T(X-Vw)da= ) Wii(u; — w)
0 e€E;
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with
. |35 BHOE mE)  (F nf)(3E. mf
N 4ok AL 4o AR

(B.5)
where ¢ = 1/7. In the streamline diffusion method
o = |A|/h where h is a characteristic element dimen-
sion. Note the similarity to the NN-scheme weights
described in appendix A.

In the system case,

u; + Au; + Buy =0 (B.6)

the least-squares term takes the following form
—-/(Au, + Bu,)T r (Aw, + Bw,)da  (B.7)
ol

where T is a matrix. The exact form of 7 is a subject
for debate. In the present implementation, we consider
a formulation by Hansbro and Johnson [3] which solves
the Euler equations in conserved variable form with 7
given by

T = h(A? + B%)~/2, (B.8)

Numerical results with the basic Galerkin least-squares
method indicate that further measures must be taken
to prevent solution oscillations near discontinuities.
These oscillations can be removed by the addition of
the discontinuity capturing operator described in the
next section.

Discontinuity Capturing Operator

Consider another symmetric bilinear term for sta-
bilizing the Galerkin scheme

B(u,w)pc = -hfnrc(Vw -Vu) da. (B.9)

This term is a weak form of the viscous-like term

B(u,w)pc = h/ wV - xkVuda. (B.10)
a

Again we have that B(u,u)pe < 0if k > 0. To pre-
vent this term from destroying the accuracy of the
scheme, « is chosen in the following form:

X Vu
&= [Vl + e (B.11)
for small €. This choice of x vanishes when X - Vu is
small. This term is expected to be small when the so-
lution is smooth and the element residuals are small.
The simplest extension to systems replaces the abso-
lute value by a vector norm. Although seemingly sim-
plistic, this approximation works surprisingly well.
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